
ORIGINAL PAPER

Network structure and prevalence of Cryptosporidium
in Belding’s ground squirrels

Kimberly L. VanderWaal & Edward R. Atwill &
Stacie Hooper & Kelly Buckle & Brenda McCowan

Received: 13 February 2013 /Revised: 8 July 2013 /Accepted: 9 July 2013
# Springer-Verlag Berlin Heidelberg 2013

Abstract Although pathogen transmission dynamics are pro-
foundly affected by population social and spatial structure,
few studies have empirically demonstrated the population-
level implications of such structure in wildlife. In particular,
epidemiological models predict that the extent to which con-
tact patterns are clustered decreases a pathogen’s ability to
spread throughout an entire population, but this effect has yet
to be demonstrated in a natural population. Here, we use
network analysis to examine patterns of transmission of an
environmentally transmitted parasite, Cryptosporidium spp.,
in Belding’s ground squirrels (Spermophilus beldingi). We
found that the prevalence of Cryptosporidium was negatively
correlated with transitivity, a measure of network clustering,

and positively correlated with the percentage of juvenile
males. Additionally, network transitivity decreased when
there were higher percentages of juvenile males; the explor-
atory behavior demonstrated by juvenile males may have
altered the structure of the network by reducing clustering,
and low clustering was associated with high prevalence. We
suggest that juvenile males are critical in mediating the ability
of Cryptosporidium to spread through colonies, and thus may
function as “super-spreaders.” Our results demonstrate the
utility of a network approach in quantifying mechanistically
how differences in contact patterns may lead to system-level
differences in infection patterns.

Keywords Social networks .Cryptosporidium . Ground
squirrels . Pathogen transmission . Infection patterns .

Clustering .Wildlife disease

Introduction

Processes underlying the transmission of pathogens through
populations are complex and highly dependent on host behav-
ior, yet traditional approaches have ignored behavior partly due
to the computational sophistication required to incorporate
behavioral complexity. Classical compartmental models of
the spread of infectious disease assume that individuals within
populations mix homogenously, and that the probability of
contact is equal for every pair of individuals in the population
(Anderson and May 1992; McCallum et al. 2001). In reality,
however, contact patterns are highly heterogeneous and an
animal’s contact rate with infected individuals is dependent
on local patterns of interaction. Local spatial and social struc-
tures in populations create heterogeneity in transmission pat-
terns (Keeling and Eames 2005; Bansal et al. 2007; Otterstatter
and Thomson 2007; Perkins et al. 2008).

Network theory provides a set of tools for analyzing het-
erogeneity in contact patterns. A network consists of a set of

Communicated by D. P. Croft

K. L. VanderWaal
Animal Behavior Graduate Group, University of
California—Davis, 1 Shields Avenue, Davis, CA 95616, USA

K. L. VanderWaal :B. McCowan
International Institute for Human–Animal Networks, University of
California—Davis, 1 Shields Avenue, Davis, CA 95616, USA

E. R. Atwill :B. McCowan (*)
Department of Population Health and Reproduction, School of
Veterinary Medicine, University of California—Davis, 1 Shields
Avenue, Davis, CA 95616, USA
e-mail: bjmccowan@ucdavis.edu

E. R. Atwill
Western Institute for Food Safety and Security, University of
California—Davis, 1 Shields Avenue, Davis, CA 95616, USA

S. Hooper
Department of Ecology and Evolution, University of
California—Davis, 1 Shields Avenue, Davis, CA 95616, USA

K. Buckle
School of Veterinary Science, The University of Queensland,
Building #8114, Gatton, QLD 4343, Australia

Behav Ecol Sociobiol
DOI 10.1007/s00265-013-1602-x



nodes (individuals) that are interlinked based on some criteri-
on (Wasserman and Faust 1994; Croft et al. 2008). In practice,
criteria for linking edges may include measures of proximity,
social interactions, or shared space use. Models that account
for heterogeneity in connectivity tend to result in epidemics
with slower growth rates, fewer numbers of secondary infec-
tions for each infected individual (R0), and lower overall
prevalence as compared to traditional mass-action models
(Keeling 2005; Keeling and Eames 2005; Turner et al.
2008). This occurs primarily because the network becomes
locally depleted of susceptible individuals, especially in high-
ly clustered networks (Keeling 1999; Keeling and Eames
2005). In addition, heterogeneity in the number of contacts
each individual has may alter transmission dynamics if few
key individuals are disproportionately involved in transmis-
sion (Lloyd-Smith et al. 2005).

Transmission is more rapid through highly dense networks
in which each node has a high mean number of contacts.
However, epidemics in networks of equal density can exhibit
profoundly different behavior depending on the degree of
clustering (Keeling 2005; Ames et al. 2011). Generally, as
clustering increases, both R0 and the final size of the epidemic
decrease (Keeling 1999; Newman 2003; Turner et al. 2008;
Wu and Liu 2008; Badham and Stocker 2010; Ames et al.
2011). For example, animals A, B, and C are all in contact
with one another in a clustered network. If animal A infects B
and B infects C, the number of susceptible individuals that C
is able to infect is reduced because two of its contacts are
already infected. Thus, the network becomes locally depleted
of susceptible individuals. By incorporating aspects of social
structure, such as clustering, models demonstrate how knowl-
edge of network structure can help us to predict population-
level epidemic dynamics from individual-level behavior.

Few field studies have incorporated network data with
empirical data on pathogen presence. Thus, far studies have
found that individuals generally have a higher risk of infec-
tion if they are better connected in the network (Corner et al.
2003; Otterstatter and Thomson 2007; Godfrey et al. 2009;
Fenner et al. 2011). Individuals that are directly linked to a
greater number of animals tend to be more at risk (Corner
et al. 2003; Godfrey et al. 2010), although some authors
show that only certain types of interactions or only contact
with infected animals impact risk (Otterstatter and Thomson
2007; Drewe 2009; Porphyre et al. 2011). In general, these
studies have looked at the effect of network measures on an
individual’s risk of disease, but few of them have looked at
the implications of network structure at a population level.
One exception is found in Otterstatter and Thomson (2007),
who demonstrated that infection spreads more rapidly though
denser networks. Although mathematical models predict this
relationship, density does not account for other aspects of
structure frequently shown to be critical for predicting patho-
gen dynamics, such as clustering.

Here, we use a network approach to investigate infection
patterns of an enteric protozoal parasite,Cryptosporidium spp.
in two colonies of Belding’s ground squirrels (Spermophilus
beldingi). Cryptosporidiosis is endemic in populations of
Belding’s ground squirrels in the Sierra Nevada Mountains,
and parasites within this genus are environmentally persistent
and have zoonotic potential (Zu et al. 1992). In California
ground squirrels (Spermophilus beecheyi), Cryptosporidium
prevalence peaked seasonally as a consequence of increased
population density and an influx of immunologically naïve
juveniles (Atwill et al. 2004). In this study, we first examine
the association between network structure and prevalence of
Cryptosporidium spp. and then investigate the impact of ju-
venile emergence on social network structure and the spread
of infection. We also analyze risk factors influencing the
probability that an individual acquires the infection.

Methods

Study site and population

The Belding’s ground squirrel is a colony-dwelling social ro-
dent primarily found in alpine regions of California, which
includes the Sierra Nevada and extends north to the Oregon
border. Squirrels are active from May through September,
thoughadults emerge fromhibernationweeks tomonthsbefore
juveniles emerge from their natal burrows (Michener 1984).
When juveniles do emerge at about 3 to 4 weeks old, their
numbers cause a rapid increase in population density. Adult
females maintain exclusive use of a home burrow system,
though they occupy overlapping home ranges (McLean 1984).

Two Belding’s ground squirrel colonies were included in
this study. Both colonies (A and B) were located within
Tuolumne Meadows, Yosemite National Park, California,
at an elevation of approximately 8,600 ft. Because the two
colonies were separated by distance (∼5 mi) and geographic
barriers (Tuolumne River), there was no movement of indi-
viduals between colonies. Sampling began in late June 2004
and continued through August 2004. One hundred fifty-eight
Belding’s ground squirrels were trapped and identified in this
study (27 adult females, 63 juvenile females, 17 adult males,
and 51 juvenile males). All squirrels trapped throughout the
season were included in the study.

Live-trapping was conducted at each colony approximately
twiceperweek.Trapswereplacedatall activeburrowentrances
at each site. This produced a grid of 40 traps spaced at approx-
imately 50m intervals in colonyA, and 32 traps spaced at 55m
intervals in colonyB.Trapswere cleanedbetween captures and
disinfected nightly to avoid cross-contamination of samples.
When trapped, squirrels were temporarily restrained, weighed,
and ear-tagged. The age of all subjects was determined by
weight. Fecal samples were collected from each new and re-
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trapped individual as often as every 3 days and analyzed for the
presence and abundance ofCryptosporidium spp. (Atwill et al.
2001). Traps captured only one squirrel at a time. Individual
squirrels were trapped on average 11.1±0.71 SE times during
the 8-week study period.

Enumeration of Cryptosporidium spp.

Oocysts were concentrated using sieved fecal suspension, and
direct immunofluorescent microscopy was used to detect and
enumerate Cryptosporidium spp. oocysts, as previously de-
scribed (Atwill et al. 2001). Final oocyst counts were adjusted
for percent recovery, determined previously to be ∼10 % for
oocyst concentrations <1,000 per gram feces and ∼16.5 % for
oocyst concentrations >1,000 per gram feces (Atwill et al.
2001). Enumeration procedures were performed at the
Veterinary Medical Teaching and Research Center of the
University of California, Davis School of Veterinary
Medicine.

Contact patterns

Two individuals were considered in “contact”with one another
if they were trapped in the same trap on the same day (only one
squirrel was trapped at a time, but traps were reset throughout
the day after each capture). This measure of association has
been used in other studies of disease transmission in rodents
and demonstrates shared space use (Perkins et al. 2009).
Shared space use increases both the probability of environ-
mental transmission and also the likelihood of social interac-
tion. Prevalence was defined as the proportion of individuals
with positive oocyst counts. Prevalence of Cryptosporidium
was calculated for the entire population and for exposed versus
non-exposed squirrels. For this comparison, an exposed indi-
vidual was defined as any squirrel that was previously in
contact with an infected squirrel at a previous time point.
Non-exposed squirrels were either those that had not yet been
or were never documented as in contact with an infected
squirrel. Individual squirrels may appear in both the non-
exposed and exposed groups if data on their infection status
exist for both before and after their first recorded contact with
an infected individual. An exposed animal may never reenter
the non-exposed group even if many weeks have elapsed with
no subsequent exposures.

Longitudinal trends

To investigate how past contact patterns affected current in-
fection status, we subdivided the 10 weeks of data into 2-week
periods. Two weeks was sufficient time to obtain a reasonable
sample size for network analysis, yet short enough to capture
the dynamic nature of contact patterns. Although not known
for ground squirrels, peak fecal oocyst shedding occurs about

2–4 weeks after exposure for other rodent species (Benarska
et al. 2003), though infection is detectable in the intestines of
euthanized mice 7 days after experimental inoculation (Hou
et al. 2004). Thus, we decided to investigate the effect of
contact rates during a 2-week period, termed the “contact
period,” on the infection patterns observed in the following
2 weeks, the “response period.”

Non-overlapping contact periods were used in network
construction. The first week was excluded because of low
trapping effort (week of arrival to study site). Trapping effort
was otherwise similar across trappingweeks. Because 4weeks
of data collection constituted a complete time series, we were
only able to define three sets of complete time series. An
additional period was constructed using trapping data from
August 8, 2004 to August 21, 2004 to examine trends in
network structure, but there was no corresponding data avail-
able on Cryptosporidium infection due to the ending of the
field season.

We investigated how overall network structure during
the contact period affected prevalence in the response peri-
od. Individual squirrels were linked in the network if they
were in contact at least once during the contact period,
creating an unweighted contact network. Separate networks
were constructed using NetMiner (NetMiner 2.6, Cyram
Corporation, Seoul, Korea) for each colony and contact
period for a total of eight networks. We analyzed the effect
of colony-level attributes on prevalence using logistic re-
gression models for grouped data in Stata (Stata 9, Stata
Corporation, College Station, TX). Here, prevalence was
defined as the percentage of individuals with positive oocyst
counts in the response period. Each model included period to
account for temporal shifts in prevalence. Colony was includ-
ed as a random effect in order to control for potentially
correlated data due to repeated sampling. Other covariates
were included singly because the small number of networks
prevented the construction of more complex models; AIC was
used to compare models. Covariates included were group size
(number of individuals trapped for that site and contact peri-
od), trapping days (number of days spent trapping during the
2-week contact period), percent juveniles (percentage of
group members that were juveniles), percent juvenile males,
percent emerging juveniles (newly emerged juveniles that
were trapped for the first time during the contact period),
and prevalence during the contact period. Five measures of
network structure were also examined: transitivity, density,
betweenness centralization, closeness centralization, and de-
gree centralization.

Transitivity, also known as the global clustering coeffi-
cient, was defined as the number of triangles in the network
(A is linked to B, B is linked to C, and C is also linked to A)
relative to the number of triplets (e.g., A is linked to B, B is
linked to C, but C is not linked to A). Density is the number
of links that exist in the network divided by the total number
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possible. Transitivity and density are reported as percent-
ages. From an epidemiological perspective, high density
networks theoretically result in more infected individuals,
while highly transitive networks result in fewer infected
individuals (Ames et al. 2011). Degree is the number of
individuals that the focal node is directly connected to.
This is the only network measure we used that incorporated
connection strength between individuals; individuals re-
ceived higher scores if they have been trapped multiple times
with the same individual. Betweenness refers to the number
of paths that pass through the focal individual if the shortest
path is traced between all other pairs of individuals.
Closeness quantifies the distance between the focal node
and all other nodes in the network (Wasserman and Faust
1994). Centralization for any network measure (degree, be-
tweenness, and closeness) essentially measures the extent to
which the network is structured around a few core individ-
uals (Wasserman and Faust 1994). High centralization can
facilitate pathogen spread because core individuals can rap-
idly transmit pathogens to many other individuals. However,
pathogen spread can be slowed if these core individuals
remain uninfected (Valente 2010).

Individual risk factors

In addition to examining how network structure impacts over-
all levels of infection in colonies, we were also interested in
how an individual’s location in the network affected its like-
lihood of acquiring Cryptosporidium. To determine which
factors increase an individual’s risk of becoming infected,
we performed mixed effects logistical regression on the prob-
ability that an individual would be infected in the response
period. An individual was considered to be infected if it had a
positive oocyst count in any fecal samples collected from it
during that period. Permutation-based methods, which are
often used in the statistical analysis of network data (Croft
et al. 2011), were not utilized here because the response
variable was not based on relational data. Covariates included
infection state during the contact period, sex, age (juvenile or
adult), degree, infected degree, closeness, and betweenness.
Degree and infected degree differ in that degree includes all an
individual’s contacts during the contact period while infected
degree only includes those contacts that were infected. To
account for the possibility that exposure prior to the contact
period may still influence infection risk, we also included a
covariate termed “precontact infected degree,”which refers to
the individual’s infected degree in the third and fourth week
prior to the response period. Colony, individual ID, and period
were included as random effects. Candidate models were
assessed using AIC, and the simplest model that was <2
ΔAIC from the model with the lowest AIC was selected.
Models <2ΔAIC from each other can be considered to explain

equivalent amounts of variation in the data (Burnham and
Anderson 2002).

We also developed a measure to quantify an individual’s
tendency to explore. Exploratoriness was defined as the
diversity of traps a squirrel was caught in relative to the
expected diversity for a squirrel being caught a given number
of times. A power regression line (y=1.02*x0.74) was fitted
that related the number of different traps squirrels were
captured in to the total number of times trapped. From this
regression equation, we calculated the expected diversity of
traps given total number of times trapped for each squirrel. A
residual was then calculated from the observed diversity of
traps minus the expected diversity generated from the regres-
sion line. Squirrels that had positive residuals relative to the
regression line were considered to be more exploratory
(weighted by the magnitude of residual) and squirrels with
negative residuals were considered less exploratory. These
exploratory measures were calculated for each squirrel in
each time period.

Results

The overall prevalence (percentage of individuals that had
positive oocyst counts at least once during the summer) of
Cryptosporidium spp. in the two colonies of Belding’s
ground squirrels was 22.9±1.5 %. The prevalence in squir-
rels that had been exposed at any point in the study period to
infected individuals was 27.7±2.2 %, while the prevalence
in squirrels that experienced no documented exposure was
9.7±2.2 % (z=4.85, p<0.001). Across the field season,
prevalence in both colonies A and B increased with each
2-week period (ß=0.63, p<0.01) and was higher at colony A
than B (ß=−1.15, p<0.01, Fig. 1). The percentage of juve-
niles increased moderately over time as they emerged from
their natal burrows (Fig. 2).

From an individual perspective, risk of infection during
the response period was positively correlated with infected
degree during the contact period (ß=0.21, p=0.014).
Juveniles were significantly more likely to become infected
than adults (ß=2.96, p<0.001). Models that contained addi-
tional individual-level covariates explained little additional
variation in the data. Indeed, an individual’s overall degree,
precontact infected degree (in the third and fourth week prior
to the response period), closeness, betweenness, sex, and
infection state during the contact period were not significant-
ly associated with infection status.

Controlling for colony and period, the factor that explained
the most variation in the prevalence of Cryptosporidium spp.
at the colony-level was percent juvenile males, followed by
transitivity in the contact period (Table 1). Groups with greater
numbers of juvenile males in the contact period exhibited
higher prevalence in the response period (Fig. 3a). Although
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the percentage of adult males and juvenile females were
significant in univariate analyses, these factors became non-
significant once the percentage of juvenile males was included
in multivariate models. Prevalence in the response period was
also negatively correlated with transitivity in the contact peri-
od (Fig. 3b). Group size was also positively correlated with
prevalence (Table 1) and was not correlated with percent
juveniles (ß=0.01, p=0.28). Group size peaked in period 2,
while prevalence peaked later for both colonies. All other
models explained much less variance than these three factors
(ΔAIC >4.0 relative to best model).

Because juvenile males emerged as the only age class whose
numbers correlated with prevalence, we examined the effect of

juvenile males on network structure. Although the overall
proportion of juveniles was approximately equal across colo-
nies (Fig. 2a), the juvenile sex ratio was considerably different
in the two colonies (ß=−0.64, p<0.01). Colony A had an
approximately equal number of juvenile males and females
(1:1 or 1.0), while colony B had only half as many juvenile
males as females (Fig. 2b). As the percentage of juvenile males
in a group increased, the network became more dense
(ß=0.013, p<0.01) and less clustered (ß=−0.007, p<0.01,
Fig. 3c). This correlation with network structure was only
significant for juvenile males (effect of percent juveniles on
density and transitivity, p>0.4) (Table 2). In addition, males
were more exploratory than females (ß=0.21, p<0.03) and
juveniles were more exploratory than adults (ß=0.19,
p<0.05). Juvenile males showed an increase in exploratory
behavior over the summer (ß=0.33, p<0.02) whereas all other
age/sex classes did not.

Discussion

This study demonstrates that trapping networks can explain
transmission patterns in pathogens with indirect transmission.
Individuals that were in contact with infected squirrels were
2.84 times (cumulative risk ratio) more likely to become
infected compared to squirrels that did not come in contactwith
infected individuals. Even when we restricted the analysis by
assuming a 2–4 week response period in the longitudinal data,
exposed individuals were 1.5 times more likely to become
infected in the subsequent time period as compared to individ-
uals that experienced no documented exposure. The difference
between the two cumulative risk ratios likely results from our
assumptionabout the responseperiod. First, in the longitudinal
analysis, individuals that were exposed during the contact
period may not have begun shedding oocysts until after the
response period, causing them to be erroneously classified as
uninfected. Second, individuals that had no contact with
infected squirrels during the contact period may have been
exposed before the contact period, causing them to be errone-
ously classified as unexposed. Since Cryptosporidium is pri-
marily environmentally transmitted, the networks constructed
in this study likely quantify the significance of shared space
use. However, we cannot exclude social interaction (i.e., direct
contact transmission) as a mode of transmission, especially
considering that traps were located at burrow entrances.

Individual infection risk was best predicted by the number
of infected contacts and the age of the animal. Juveniles were
more likely to be infected, a pattern commonly observed
across many Cryptosporidium host species (Zu et al. 1992;
Atwill et al. 2001). While other studies have demonstrated
that degree correlates with infection risk (Corner et al. 2003;
Godfrey et al. 2009), our results concur with the results of
Otterstatter and Thomson (2007) and Porphyre et al. (2011)
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that the number of infected contacts is much more important
than the overall number of contacts. Degree may not serve as
a useful proxy for infected degree because it does not nec-
essarily correlate with infected degree. Indeed, individuals
with higher degree sometimes show a reduced likelihood of
becoming infected (Cohen et al. 1997; Porphyre et al. 2011).
Similarly, the types of interactions that an animal engages in
may be much more important than the overall amount of
interaction (Drewe 2009). Infected individuals may also
exhibit altered interaction patterns due to changes in their
own behavior or the behavior of conspecifics towards them
(Hawley et al. 2011). These studies taken together suggest
that caution should be exercised when using overall degree
as a proxy for contact with infected individuals.

While our analysis showed that network measures beyond
infected degree provide little explanatory value in predicting

individual risk, complex network measures were useful in
predicting population-level patterns on infection. One of the
most important factors correlated with colony-level spread of
Cryptosporidium was transitivity, a measure of local cluster-
ing. Theoretical models demonstrate that high clustering
generally reduces the ability of a disease to spread through
populations (Keeling 1999; Newman 2003; Turner et al.
2008; Wu and Liu 2008; Badham and Stocker 2010; Ames
et al. 2011), particularly in networks with intermediate den-
sities (Turner et al. 2008; Ames et al. 2011). Yet, this effect
has not been demonstrated in an empirical study of wildlife.
Clustering refers to the degree to which nodes with a neigh-
bor in common are likely to be connected themselves.
Transmission is inhibited in a more transitive network be-
cause the network becomes locally saturated with infected
individuals, even if susceptible individuals exist elsewhere.
This sort of clustering can prevent wider dissemination of
infection.

On a colony level, the other factor that was strongly
correlated with prevalence was percent juvenile males.
Populations with a high percentage of juveniles can be
expected to have a higher prevalence of infection simply
due to the presence of numerous immunologically naïve
animals (Zu et al. 1992). Infected juveniles also shed on
average 36 times higher concentration of oocysts than
infected adults (unpublished data). However, if the presence
of naïve individuals was a main driver influencing preva-
lence, then we would expect prevalence to be correlated
with either the number of newly emerged juveniles in the
population (percent new juveniles) or the total number of
juveniles (percent juveniles). Neither of these measures was
significant (Table 1). In addition, we would expect both
colonies to have similar prevalence given that they had
similar proportions of juveniles (Fig. 2a), yet starkly higher
prevalence was observed in colony A. One key difference
between the colonies was in their juvenile sex ratios. Colony
A had a nearly even juvenile sex ratio, while colony B had
nearly twice as many juvenile females as males (Fig. 2b).

Table 1 Correlations between colony-level attributes and prevalence
(*p value <0.05). Models were fitted using logistic regressions for
grouped data. Each factor represents a different model that included
colony as a random effect and sampling period. Sampling period, which
referred to the 2-week period in which fecal samples were collected,
was significant in all models

Model ß SE ΔAIC

% Juvenile males 0.07 0.003 0.0*

Transitivity −0.08 0.000 0.4*

Group size 0.04 0.01 1.0*

Current prevalence 3.30 1.15 4.5*

% Juveniles 0.07 0.03 6.4

Density −0.003 0.001 9.0

Mean degree −1.82 0.84 9.2

Mean betweenness −20.43 0.78 10.0*

% Emerging juveniles −0.01 0.02 10.3

Betweenness centralization −0.00 0.00 10.4

Degree centralization −0.004 0.003 10.1

Trapping days 0.343 0.443 21.5

Null n/a n/a 25.6
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Controlling for colony and period, the percentage of juve-
nile males explained more variance in prevalence than per-
cent juveniles or the percentage of any other age class.

We suggest that the importance of juvenile males arises
from their behavior and their role as dispersers. Juvenile
males are more socially active than females (Murie and
Michener 1984). Moreover, juvenile males exhibit more
sociosexual play, involving higher rates of physical contact
and specifically fecal–oral contact than juvenile females
(Nunes et al. 1999), creating greater opportunities for direct
transmission. Perhaps more importantly, juvenile males were
the most exploratory age class and their exploration in-
creased over the summer. This is likely because they are
the dispersing sex, and dispersal usually occurs within 3 to
12 weeks postemergence (Holekamp 1984). Dispersal is
usually preceded by an exploratory period where the juvenile
may roam long distances from the natal burrow (Holekamp
1984). The consequence of this exploration for network
structure may be to link clusters of individuals that may
otherwise have been poorly connected, creating more path-
ways for transmission to occur. Indeed, networks with a high
percentage of juvenile males had lower clustering (Fig. 3).
While percent juvenile males were also positively correlated
with network density, density was not as strongly correlated
with prevalence as transitivity (Table 1). Thus, from an
epidemiological perspective, the exploratory behavior typi-
cal of juvenile males is significant to transmission dynamics
in that it creates networks with reduced levels of clustering,
which is in turn correlated with high prevalence. The effect
of juvenile males on network connectivity is readily apparent
even to visual inspection (Fig. 4). Therefore, we argue that
juvenile males may be critical in mediating the ability of
Cryptosporidium to spread because their behavior as the
dispersing sex alters the structure of the contact network.

This study demonstrates how network theory can be uti-
lized to identify classes of individuals that may be critical for
pathogen spread. Other studies suggest that certain types of
individuals are especially important in the maintenance and
spread of pathogens. Adult males have been recognized in
both empirical and network modeling studies as playing a
critical role in disease spread (Ferrari et al. 2003; Perkins

et al. 2008; Grear et al. 2009). It has been experimentally
demonstrated that males with higher testosterone maintain
more connections in rodent populations (Grear et al. 2009),
and disassortative mixing of sexes and extreme sex biases in
transmission are necessary for network models to accurately
match observed prevalence (Perkins et al. 2008). Furthermore,
when the infectiousness of adult male or female mice was
experimentally reduced in replicated study populations, reduc-
ing the parasitic load of males resulted in population-wide
declines in prevalence. A similar effectwas not observedwhen
females were targeted. While the authors did discuss possible

Table 2 Correlations between percent juveniles in a colony and mea-
sures of network structure (transitivity and density)

ß SE p value

TRANSIVITY

% Juveniles −0.003 0.003 0.45

% Juvenile males −0.007 0.003 0.007

DENSITY

% Juveniles −0.006 0.003 0.66

% Juvenile males 0.013 0.003 <0.001

a

b

Fig. 4 Contact networks for colony A (N=69) and B (N=49) during the
second 2-week time period. Squares and circles represent males and
females, respectively. Large and small nodes denote adults and juveniles,
respectively. Black nodes are those that tested positive for Cryptosporid-
ium during the contact period. Both networks had similar densities (18.5
and 18.7% for A andB, respectively) and similar percentages of juveniles
(73.9 and 67.3 %). Colony A had a greater percentage of juvenile males
(34.8 versus 22.4 % for A and B, respectively) and also lower transitivity
(47.2 versus 59.9 %)
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immunological sex differences, they emphasized that sex dif-
ferences in behaviormay have played a large role in explaining
this pattern (Ferrari et al. 2003). It seems likely that the appli-
cation of network theory would cast some light on the mecha-
nism explaining their results. However, this study did not con-
currentlymeasurepathogenpresenceandsocialpatterns in their
populations.Our results combine data on spatial/social patterns
withconcurrentdataonpathogenpresence toaddress this issue.

Finally, this study demonstrates the importance of net-
work structure in predicting the impact of pathogens at the
group or population level in wildlife. It would have been
difficult to explain colony-level differences in the ability of
the infection to spread without characterizing the network.
Even with our small sample size, network analysis was able
to capture differences in social structure that were correlated
with variation in prevalence. Indeed, it was possible to iden-
tify types of networks that correlated with higher prevalence,
quantify how these measures vary between colonies and
across time, and identify classes of individuals that may
contribute disproportionately to transmission due to their
possible influence on network structure. While social net-
works have proven to be a useful tool in predicting individ-
ual risk, we believe that their true value lies in their ability to
quantify fine-scale differences in contact patterns that lead to
emergent system-level differences in infection patterns.
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